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1. What is the
Hrushovski property (or
EPPA)?



1. What is the Hrushovski property (or EPPA)?
Suppose 𝐺 is finite graph, and 𝑝 is a ismorphism between subgraphs
of 𝐺. Can 𝑝 be extended to an automophism of 𝐺?

No. Consider the following.
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1. What is the Hrushovski property (or EPPA)?
Suppose 𝐺 is finite graph, and 𝑝 is a ismorphism between subgraphs
of 𝐺. Is there a finite graph 𝐺′ such that 𝐺 embeds into 𝐺′ and 𝑝 be
extended to an automophism of 𝐺′?

Yes.
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1. What is the Hrushovski property (or EPPA)?

Theorem (Hrushovski 1992, Herwig and Lascar 2000) :  Suppose 𝐺
is a finite graph and 𝑃  is the set of isomorphisms of subgraphs of 𝐺,
i.e., partial automorphism of 𝐺. Then there is a finite graph 𝐺′ and a
graph embedding 𝜑 : 𝑉 (𝐺) → 𝑉 (𝐺′) such that for each 𝑝 ∈ 𝑃 , 𝜑 ∘
𝑝 ∘ 𝜑−1 ↾ 𝜑(𝑉 (𝐺)) extends to an automophism of 𝐺′.

Definition : A pair (𝐺′, 𝜑) is a Hrushovski witness for 𝐺.
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1. What is the Hrushovski property (or EPPA)?
Remark : If (𝐺′, 𝜑) is minimal, i.e., 𝐺′ has the fewest vertices among
witnesses, then 𝐺′ is 𝑘-regular where 𝑘 is the max degree among
vertices in 𝐺.

Theorem (Bradley-Williams, Cameron, Evans, Hubička, Konečný,
and Nešetřil (2020 and 2025)) : For all 𝑛 ∈ ℕ and graphs with
|𝑉 (𝐺)| = 𝑛, at worst the smallest witness 𝐺′ has

Ω(2𝑛/
√

𝑛) ≤ |𝑉 (𝐺′)| ≤ 𝑛2𝑛−1

Theorem (Hodges, Hodkinson, Lascar, and Shelah 1992) : The auto-
morphism group of the random graph has the small-index property.

Proof :  Use Hrushovski’s theorem among other things. □
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1. What is the Hrushovski property (or EPPA)?

Definition : If 𝑀  is a structure and 𝑝 is an isomorphism between
substructures of 𝑀 , then 𝑝 is called a partial automorphism.

Definition (Hrushovski Property) : Suppose 𝒞 is a class of finite
structures. 𝒞 is said to have the Hrushovski property, or the
Extension Property for Partial Automorphisms (EPPA), if for
every 𝑀 ∈ 𝒞, there exists another structure 𝑀 ′ ∈ 𝒞 and an embed-
ding 𝜑 : 𝑀 → 𝑀 ′ such that for all partial automorphisms 𝑝 of 𝑀 ,
we have that 𝜑 ∘ 𝑝 ∘ 𝜑−1 ↾ 𝜑(𝑀) extends to an automophism of 𝑀 ′.

Non-examples: finite linear orders, finite Boolean algebras

Examples: finite sets, finite vector spaces, finite metric spaces (Solecki
2005), finite groups (Siniora 2017)
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1. What is the Hrushovski property (or EPPA)?
More examples:

Definition : A hypergraph is a pair (𝑉 , 𝐸) where 𝑉  is a set and 𝐸
is a collection of subsets of 𝑉  each of which contains at least two
vertices.

hypergraphs

ℒ-structures for any finite relational language ℒ (Herwig 1995)

𝒯-free ℒ-structures for any finite relational language ℒ and any
finite set of ℒ-structures 𝒯 (Herwig and Lascar 2000)
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2. Why might you be in'
terested in EPPA?



2. Why might you be interested in EPPA?

Definition : Suppose 𝒞 is a class of finite structures with countably
many elements (up to isomorphism) and
• the hereditary property
• the joint embedding property
• the amalgamation property

Then 𝒞 is defined to be a Fraïssé class.

Proposition :  Suppose 𝒞 is a class of finite structures with countably
many elements (up to isomorphism) and
• the hereditary property
• the joint embedding property
• the Hrushovski property

Then 𝒞 is a Fraïssé class.
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2. Why might you be interested in EPPA?

Proposition (Kechris and Rosendal 2007) :

Let 𝒦 be a Fraïssé class, 𝐾 its Fraïssé limit, and Aut(𝐾) the auto-
morphism group of 𝐾 . Then 𝒦 has the Hrushovski property if and
only if there is a countable chain 𝐶0 ≤ 𝐶1 ≤ 𝐶2 ≤ … ≤ Aut(𝐾) of
compact subgroups whose union is dense in Aut(𝐾).

Proposition : Suppose 𝒦 is a Fraïssé class and 𝐾 its Fraïssé limit. If
𝒦 has both the Hrushovski property and the amalgamation property
with automophisms, then Aut(𝐾) has ample generics.
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3. How is EPPA con'
nected to the topology of
free groups?



3.1 Topology of free groups3. How is EPPA connected to the topol-
ogy of free groups?

Definition : If 𝐹  is a finitely generated free group,

{𝑤𝐻 : 𝑤 ∈ 𝐹, 𝐻 ≤ 𝐹, [𝐹 : 𝐻] < ∞}

defines a basis for the profinite topology on 𝐹 .

Theorem : (Hall 1949) Finitely generated subgroups are closed.

Theorem : (Ribes and Zalesskii 1992) If 𝐻1, …, 𝐻𝑛 are finitely gen-
erated subgroups of 𝐹 , then

𝐻1…𝐻𝑛 = {ℎ1…ℎ𝑛 : ℎ𝑖 ∈ 𝐻𝑖}

is closed in the profinite topology on 𝐹 .

Remark : There are many proofs of R and Z, including from EPPA
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3.1 Topology of free groups3. How is EPPA connected to the topol-
ogy of free groups?

Definition : Given non-empty set of primes 𝐿, a subgroup 𝐻  of 𝐺
is an 𝐿'index subgroup of 𝐺 if [𝐺 : 𝐻] can be written as a finite
product of primes in 𝐿.

Definition : Given a finitely generated free group 𝐹  and a non-
empty set of primes 𝐿, the pro'𝐿 topology on 𝐹  is the topology
with basis given by cosets of 𝐿-index normal subgroups of 𝐹 .

Definition : If 𝐿 is the set of all primes, the pro-𝐿 topology is called
the profinite topology.

Definition : If 𝐿 is the set of all odd primes, the pro-𝐿 topology is
called the pro'odd topology.
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3.1 Topology of free groups3. How is EPPA connected to the topol-
ogy of free groups?

Definition : A pseudovariety 𝒞 of finite groups is a non-empty
class of finite groups with the following three properties:
1. if 𝐺 ∈ 𝒞 and 𝐻 ≤ 𝐺, then 𝐻 ∈ 𝒞;
2. if 𝐺 ∈ 𝒞 and 𝐺 ⟶ 𝐻  is a surjective homomorphism of groups,

then 𝐻 ∈ 𝒞; and
3. if 𝐺, 𝐻 ∈ 𝒞, then 𝐺 × 𝐻 ∈ 𝒞.

Definition : For any group 𝐺 and any pseudovariety 𝒞, the pro'𝒞
topology on 𝐺 is the coasest topology on 𝐺 with which 𝐺 a is
topological group and any normal subgroup 𝑁  of 𝐺 with 𝐺/𝑁 ∈ 𝒞
is open.

Example : Given a non-empty set of primes 𝐿, the class of finite
groups with order given by a finite product of primes in 𝐿 is a
pseudovariety 𝒞, and the pro-𝒞 topology = the pro-𝐿 topology
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3.1 Topology of free groups3. How is EPPA connected to the topol-
ogy of free groups?

Theorem : (Ribes and Zalesskii 1993) Let 𝒞 be a pseudovariety of
groups and 𝐹  be a finitely generated free group. If 𝐻1, …, 𝐻𝑛 are
finitely generated closed subgroups of 𝐹 , then

𝐻1…𝐻𝑛 = {ℎ1…ℎ𝑛 : ℎ𝑖 ∈ 𝐻𝑖}

is closed in the pro-𝒞 topology on 𝐹 .

Remark : Only one proof is known.
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3.2 Herwig and Lascar3. How is EPPA connected to the topology of
free groups?

Definition : A tournament is a complete graph with an orientation
on all the edges.

Definition : Given a group 𝐺 and a subgroup 𝐻 , 𝐻  is closed under
square roots if for all 𝑔 ∈ 𝐺, 𝑔2 ∈ 𝐻  implies 𝑔 ∈ 𝐻 .

Remark : If 𝐻  is closed in the pro-odd topology, then 𝐻  is closed
under square roots.
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3.2 Herwig and Lascar3. How is EPPA connected to the topology of
free groups?

Theorem (Herwig and Lascar 2000) : TFAE:
• the class of finite tournaments has the Hrushovski property;
• for any finitely generated free group 𝐹  and any finitely generated

subgroup 𝐻 ≤ 𝐹 , if 𝐻  is closed under square roots, then 𝐻  is
closed in the pro-odd topology.

Proof :  Uses Ribes and Zalesskii. □

Theorem (Siniora 2017) : The universal homogeneous tournament
has ample generics if and only if the class of finite tournaments has
Hrushovski property.
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3.2 Herwig and Lascar3. How is EPPA connected to the topology of
free groups?

Definition : Suppose 𝐿 ⊂ ℕ. An 𝐿'hypertournament is a struc-
ture with universe 𝑉  and exactly one 𝑙-ary relation for each 𝑙 ∈ 𝐿.
Moreover, each relation satisfies the following properties.
1. For each 𝑙 ∈ 𝐿 and {𝑣1, …, 𝑣𝑙} ∈ [𝑉 ]𝑙, there exists 𝜎 ∈ Sym𝑙 with

(𝑣𝜎(1), …, 𝑣𝜎(𝑙)) ∈ 𝑅𝑙.
2. There is no 𝑙 ∈ 𝐿 and {𝑣1, …, 𝑣𝑙} ∈ [𝑉 ]𝑙 such that

(𝑣1, 𝑣2, …, 𝑣𝑙), (𝑣2, 𝑣3, …, 𝑣1), …, (𝑣𝑙, 𝑣1, …, 𝑣𝑙−1) ∈ 𝑅𝑙.
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3.2 Herwig and Lascar3. How is EPPA connected to the topology of
free groups?

Definition : Given a group 𝐺 and a subgroup 𝐻 , 𝐻  is closed under
𝑙 roots if for all 𝑔 ∈ 𝐺, 𝑔𝑙 ∈ 𝐻  implies 𝑔 ∈ 𝐻 .

Definition : Given a group 𝐺, a subgroup 𝐻 , and 𝐿 ⊂ ℕ, 𝐻  is closed
under 𝐿 roots if for all 𝑙 ∈ 𝐿, 𝐻  is closed under 𝑙 roots.

Notation : If 𝐿 is a subset of the primes, 𝐿⟂ is the set of other primes.

Remark : If 𝐻  is closed in the pro-𝐿⟂ topology, then 𝐻  is closed under
𝐿 roots.
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3.2 Herwig and Lascar3. How is EPPA connected to the topology of
free groups?

Theorem (Huang, Pawliuk, Sabok, and Wise 2018) : Given a non-
empty proper subset of primes 𝐿, TFAE:
• the class of finite 𝐿-hypertournaments has the Hrushovski prop-

erty;
• for any finitely generated free group 𝐹  and any finitely generated

subgroup 𝐻 ≤ 𝐹 , 𝐻  is closed under 𝐿 roots implies 𝐻  is closed in
the pro-𝐿⟂ topology.

Proof :  Uses Ribes and Zalesskii. □

Theorem (Huang, Pawliuk, Sabok, Wise 2018) : Suppose 𝐿 is a set of
all primes but one. The class of 𝐿-hypertournaments does not have
the Hrushovski property.
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3.3 Proofs 3. How is EPPA connected to the topology of free groups?

Theorem : (Hrushovski 1992, Herwig and Lascar 2000) Suppose 𝐺
is a finite graph and 𝑃  is the set of isomorphisms of subgraphs of
𝐺, i.e., partial automorphism of 𝐺. Then there is a finite graph 𝐺′

and a graph embedding 𝜑 : 𝐺 → 𝐺′ such that for each 𝑝 ∈ 𝑃 , 𝜑 ∘
𝑝 ∘ 𝜑−1 ↾ 𝜑(𝐺) extends to an automophism of 𝐺′.

The following proof comes from Herwig and Lascar.
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3.3 Proofs 3. How is EPPA connected to the topology of free groups?
We need to construct 𝐺′ and 𝜑, and define extensions of each 𝑝 ∈ 𝑃
on 𝐺′. Consider the free group 𝐹(𝑃). Let 𝐻 < 𝐹(𝑃).

𝑉 (𝐺′) ≔ 𝐹(𝑃)/𝐻

Fix a vertex 𝑣0 of 𝐺. For all 𝑣 ∈ 𝑉 (𝐺), let 𝜑(𝑣) ≔ 𝑝𝐻  where 𝑝 ∈ 𝑃
and 𝑝(𝑣0) = 𝑣.

𝐸(𝐺′) ≔ {edges from 𝐺} ∪ {new edges}
edges from 𝐺 = {{𝜑(𝑣), 𝜑(𝑣′)} : {𝑣, 𝑣′} ∈ 𝐸(𝐺)}

new edges = {𝑤 ⋅ 𝑒 : 𝑤 ∈ 𝐹(𝑃), 𝑒 is an edge from 𝐺}

For all 𝑤𝐻 ∈ 𝑉 (𝐺′) and 𝑝 ∈ 𝑃 , 𝜑 ∘ 𝑝 ∘ 𝜑−1(𝑤𝐻) ≔ 𝑝𝑤𝐻 .
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3.3 Proofs 3. How is EPPA connected to the topology of free groups?
Requirements for 𝐻 :
• 𝐻  must make 𝜑 a well-defined function.
• 𝐻  must make 𝜑 is injective.
• 𝐻  can’t break the fact that 𝜑 is a graph embedding.
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3.3 Proofs 3. How is EPPA connected to the topology of free groups?
First attempt at 𝐻 . Consider

𝐻𝑣0
:= {𝑝𝑛 ⋅ ⋯ ⋅ 𝑝1 ∈ 𝐹(𝑃) : 𝑝𝑛 ∘ ⋯ ∘ 𝑝1(𝑣0) = 𝑣0}.

Note 𝐻𝑣0
 is the first fundamental group of the graph with 𝑉 (Γ) ≔

𝑉 (𝐺) and 𝐸(Γ) ≔ {(𝑣1, 𝑣2) : ∃𝑝 ∈ 𝑃 , 𝑝(𝑣1) = 𝑣2}

Pros of 𝐻𝑣0

• 𝐻𝑣0
 makes 𝜑 a well-defined function

Cons of 𝐻𝑣0

• 𝜑 is maybe not injective
• [𝐹(𝑃) : 𝐻𝑣0

] might be infinite
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3.3 Proofs 3. How is EPPA connected to the topology of free groups?
Second attempt at 𝐻 . Define 𝐵 ≔ {(𝑝, 𝑞) ∈ 𝑃 2 : 𝑝(𝑣0) ≠ 𝑞(𝑣0)}.
For (𝑝, 𝑞) ∈ 𝐵, 𝑝−1 · 𝑞 ∉ 𝐻𝑣0

. So, we can define a normal subgroup
of finite index 𝑁𝑝,𝑞 with 𝑝−1 · 𝑞𝑁𝑝,𝑞 ∩ 𝐻𝑣0

= ∅.

Let 𝑁𝐵 ≔ ⋂(𝑝,𝑞)∈𝐵 𝑁𝑝,𝑞 .

Consider 𝐻2 ≔ 𝐻𝑣0
𝑁𝐵.

Pros of 𝐻2
• 𝐻2 makes 𝜑 a well-defined function
• 𝐻2 makes 𝜑 a injective
• [𝐹 (𝑃 ) : 𝐻2] is finite

Cons of 𝐻2
• the new edges may still break the embedding property of 𝜑
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3.3 Proofs 3. How is EPPA connected to the topology of free groups?
Third attempt at 𝐻 . We need to make sure that non-edges in 𝜑(𝐺)
are not in any orbit of any edge in 𝜑(𝐺). Let 𝐵′ be the set of all
(𝑝1, 𝑝2, 𝑝3, 𝑝4) ∈ 𝑃 4 such that

𝑝1𝑝−1
3 𝑝4𝑝−1

2 ∉ 𝑝1𝐻𝑣0
𝑝−1

1 𝑝2𝐻𝑣0
𝑝−1

2

and

𝑝1𝑝−1
4 𝑝3𝑝−1

2 ∉ 𝑝1𝐻𝑣0
𝑝−1

1 𝑝2𝐻𝑣0
𝑝−1

2 .

Apply Ribes and Zalesskii.

Let 𝐻 = 𝐻𝑣0
(⋂(𝑝,𝑞)∈𝐵 𝑁𝑝,𝑞 ∩ ⋂(𝑝1,𝑝2,𝑝3,𝑝4)∈𝐵′ 𝑁𝑝1,𝑝2,𝑝3,𝑝4

)
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