The Hrushovski property and the profinite topology

Julian Cheng

McGill

February, 2025

Outline

1. What is the Hrushovski property (or EPPA)?	2
2. Why might you be interested in EPPA?	
3. How is EPPA connected to the topology of free groups?	12
3.1 Topology of free groups	13
3.2 Herwig and Lascar	17
3.3 Proofs	22
Bibliography	

Suppose G is finite graph, and p is a ismorphism between subgraphs of G. Can p be extended to an automophism of G?

No. Consider the following.

Suppose G is finite graph, and p is a ismorphism between subgraphs of G. Is there a finite graph G' such that G embeds into G' and p be extended to an automophism of G'?

Yes.

Theorem (Hrushovski 1992, Herwig and Lascar 2000): Suppose G is a finite graph and P is the set of isomorphisms of subgraphs of G, *i.e.*, partial automorphism of G. Then there is a finite graph G' and a graph embedding $\varphi : V(G) \to V(G')$ such that for each $p \in P, \varphi \circ p \circ \varphi^{-1} \upharpoonright \varphi(V(G))$ extends to an automophism of G'.

Definition: A pair (G', φ) is a **Hrushovski witness** for *G*.

Remark: If (G', φ) is minimal, *i.e.*, G' has the fewest vertices among witnesses, then G' is k-regular where k is the max degree among vertices in G.

Theorem (Bradley-Williams, Cameron, Evans, Hubička, Konečný, and Nešetřil (2020 and 2025)): For all $n \in \mathbb{N}$ and graphs with |V(G)| = n, at worst the smallest witness G' has

$$\Omega(2^n/\sqrt{n}) \le |V(G')| \le n2^{n-1}$$

Theorem (Hodges, Hodkinson, Lascar, and Shelah 1992): The automorphism group of the random graph has the small-index property.

Proof: Use Hrushovski's theorem among other things.

Definition: If M is a structure and p is an isomorphism between substructures of M, then p is called a **partial automorphism**.

Definition (Hrushovski Property): Suppose \mathcal{C} is a class of finite structures. \mathcal{C} is said to have the **Hrushovski property**, or the **Extension Property for Partial Automorphisms (EPPA**), if for every $M \in \mathcal{C}$, there exists another structure $M' \in \mathcal{C}$ and an embedding $\varphi : M \to M'$ such that for all partial automorphisms p of M, we have that $\varphi \circ p \circ \varphi^{-1} \upharpoonright \varphi(M)$ extends to an automophism of M'.

Non-examples: finite linear orders, finite Boolean algebras

Examples: finite sets, finite vector spaces, finite metric spaces (Solecki 2005), finite groups (Siniora 2017)

More examples:

Definition: A hypergraph is a pair (V, E) where V is a set and E is a collection of subsets of V each of which contains at least two vertices.

hypergraphs

 \mathcal{L} -structures for any finite relational language \mathcal{L} (Herwig 1995)

 \mathcal{T} -free \mathcal{L} -structures for any finite relational language \mathcal{L} and any finite set of \mathcal{L} -structures \mathcal{T} (Herwig and Lascar 2000)

2. Why might you be interested in EPPA?

2. Why might you be interested in EPPA?

Definition: Suppose \mathcal{C} is a class of finite structures with countably many elements (up to isomorphism) and

- the hereditary property
- the joint embedding property
- the amalgamation property

Then ${\mathcal C}$ is defined to be a Fraïssé class.

Proposition: Suppose \mathcal{C} is a class of finite structures with countably many elements (up to isomorphism) and

- the hereditary property
- the joint embedding property
- the Hrushovski property

Then ${\mathcal C}$ is a Fraïssé class.

Proposition (Kechris and Rosendal 2007):

Let \mathcal{K} be a Fraïssé class, K its Fraïssé limit, and $\operatorname{Aut}(K)$ the automorphism group of K. Then \mathcal{K} has the Hrushovski property if and only if there is a countable chain $C_0 \leq C_1 \leq C_2 \leq \ldots \leq \operatorname{Aut}(K)$ of compact subgroups whose union is dense in $\operatorname{Aut}(K)$.

Proposition: Suppose \mathcal{K} is a Fraïssé class and K its Fraïssé limit. If \mathcal{K} has both the Hrushovski property and the amalgamation property with automophisms, then $\operatorname{Aut}(K)$ has ample generics.

3. How is EPPA connected to the topology of free groups? **3.1 Topology of free groups**³. How is EPPA connected to the topology of free groups? **Definition**: If *F* is a finitely generated free group,

 $\{wH: w\in F, H\leq F, [F:H]<\infty\}$

defines a basis for the **profinite topology** on F.

Theorem: (Hall 1949) Finitely generated subgroups are closed.

Theorem : (Ribes and Zalesskii 1992) If $H_1, ..., H_n$ are finitely generated subgroups of F, then

$$H_1...H_n = \{h_1...h_n : h_i \in H_i\}$$

is closed in the profinite topology on F.

Remark: There are many proofs of R and Z, including from EPPA

3.1 Topology of free groups³. How is EPPA connected to the topology of free groups? **Definition**: Given non-empty set of primes L, a subgroup H of G is an L-index subgroup of G if [G : H] can be written as a finite product of primes in L.

Definition: Given a finitely generated free group F and a nonempty set of primes L, the **pro-**L **topology** on F is the topology with basis given by cosets of L-index normal subgroups of F.

Definition: If L is the set of all primes, the pro-L topology is called the **profinite topology**.

Definition: If L is the set of all odd primes, the pro-L topology is called the **pro-odd topology**.

3.1 Topology of free groups³. How is EPPA connected to the topology of free groups? **Definition**: A **pseudovariety** \mathcal{C} **of finite groups** is a non-empty

Definition: A **pseudovariety** \mathcal{C} **of finite groups** is a non-empty class of finite groups with the following three properties:

- 1. if $G \in \mathcal{C}$ and $H \leq G$, then $H \in \mathcal{C}$;
- 2. if $G \in \mathcal{C}$ and $G \longrightarrow H$ is a surjective homomorphism of groups, then $H \in \mathcal{C}$; and
- 3. if $G, H \in \mathcal{C}$, then $G \times H \in \mathcal{C}$.

Definition: For any group G and any pseudovariety \mathcal{C} , the **pro**- \mathcal{C} **topology on** G is the coasest topology on G with which G a is topological group and any normal subgroup N of G with $G/N \in \mathcal{C}$ is open.

Example: Given a non-empty set of primes *L*, the class of finite groups with order given by a finite product of primes in *L* is a pseudovariety \mathcal{C} , and the pro- \mathcal{C} topology = the pro-*L* topology

3.1 Topology of free groups³. How is EPPA connected to the topol-

Theorem: (Ribes and Zalesskii 1993) Let \mathcal{C} be a pseudovariety of groups and F be a finitely generated free group. If H_1, \ldots, H_n are finitely generated closed subgroups of F, then

$$H_1...H_n = \{h_1...h_n: h_i \in H_i\}$$

is closed in the pro- \mathcal{C} topology on F.

Remark: Only one proof is known.

3.2 Herwig and Lascar³. How is EPPA connected to the topology of free groups? **Definition**: A **tournament** is a complete graph with an orientation on all the edges.

Definition: Given a group G and a subgroup H, H is **closed under** square roots if for all $g \in G$, $g^2 \in H$ implies $g \in H$.

Remark: If H is closed in the pro-odd topology, then H is closed under square roots.

3.2 Herwig and Lascar³. How is EPPA connected to the topology of free groups? Theorem (Herwig and Lascar 2000): TFAE:

- the class of finite tournaments has the Hrushovski property;
- for any finitely generated free group *F* and any finitely generated subgroup *H* ≤ *F*, if *H* is closed under square roots, then *H* is closed in the pro-odd topology.

Proof: Uses Ribes and Zalesskii.

Theorem (Siniora 2017): The universal homogeneous tournament has ample generics if and only if the class of finite tournaments has Hrushovski property.

3.2 Herwig and Lascar³. How is EPPA connected to the topology of free groups? **Definition**: Suppose $L \subset \mathbb{N}$. An *L*-hypertournament is a struc-

Definition: Suppose $L \subset \mathbb{N}$. An *L***-hypertournament is a structure with universe V and exactly one l-ary relation for each l \in L. Moreover, each relation satisfies the following properties.**

- 1. For each $l \in L$ and $\{v_1, ..., v_l\} \in [V]^l$, there exists $\sigma \in \text{Sym}_l$ with $(v_{\sigma(1)}, ..., v_{\sigma(l)}) \in R_l$.
- 2. There is no $l \in L$ and $\{v_1, ..., v_l\} \in [V]^l$ such that $(v_1, v_2, ..., v_l), (v_2, v_3, ..., v_1), ..., (v_l, v_1, ..., v_{l-1}) \in R_l$.

3.2 Herwig and Lascar³. How is EPPA connected to the topology of free groups? **Definition**: Given a group G and a subgroup H, H is **closed under** l **roots** if for all $g \in G$, $g^l \in H$ implies $g \in H$.

Definition: Given a group G, a subgroup H, and $L \subset \mathbb{N}$, H is **closed under** L **roots** if for all $l \in L$, H is closed under l roots.

Notation: If *L* is a subset of the primes, L^{\perp} is the set of other primes. *Remark*: If *H* is closed in the pro- L^{\perp} topology, then *H* is closed under *L* roots. **3.2 Herwig and Lascar**³. How is EPPA connected to the topology of free groups? Theorem (Huang, Pawliuk, Sabok, and Wise 2018): Given a non-

Theorem (Huang, Pawliuk, Sabok, and Wise 2018): Given a nonempty proper subset of primes *L*, TFAE:

- the class of finite *L*-hypertournaments has the Hrushovski property;
- for any finitely generated free group F and any finitely generated subgroup $H \leq F$, H is closed under L roots implies H is closed in the pro- L^{\perp} topology.

Proof: Uses Ribes and Zalesskii.

Theorem (Huang, Pawliuk, Sabok, Wise 2018): Suppose L is a set of all primes but one. The class of L-hypertournaments does not have the Hrushovski property.

Theorem: (Hrushovski 1992, Herwig and Lascar 2000) Suppose G is a finite graph and P is the set of isomorphisms of subgraphs of G, *i.e.*, partial automorphism of G. Then there is a finite graph G' and a graph embedding $\varphi : G \to G'$ such that for each $p \in P$, $\varphi \circ p \circ \varphi^{-1} \upharpoonright \varphi(G)$ extends to an automophism of G'.

The following proof comes from Herwig and Lascar.

We need to construct G' and φ , and define extensions of each $p \in P$ on G'. Consider the free group F(P). Let H < F(P).

 $V(G')\coloneqq F(P)/H$

Fix a vertex v_0 of G. For all $v \in V(G)$, let $\varphi(v) \coloneqq pH$ where $p \in P$ and $p(v_0) = v$.

 $E(G') \coloneqq \{ \text{edges from } G \} \cup \{ \text{new edges} \}$ edges from $G = \{ \{ \varphi(v), \varphi(v') \} : \{ v, v' \} \in E(G) \}$ new edges = $\{ w \cdot e : w \in F(P), e \text{ is an edge from } G \}$

For all $wH \in V(G')$ and $p \in P$, $\varphi \circ p \circ \varphi^{-1}(wH) \coloneqq pwH$.

Requirements for H:

- H must make φ a well-defined function.
- H must make φ is injective.
- H can't break the fact that φ is a graph embedding.

First attempt at H. Consider

$$H_{v_0}:=\{p_n\cdot\cdots\cdot p_1\in F(P): p_n\circ\cdots\circ p_1(v_0)=v_0\}.$$

Note H_{v_0} is the first fundamental group of the graph with $V(\Gamma)\coloneqq V(G)$ and $E(\Gamma)\coloneqq \{(v_1,v_2): \exists p\in P, p(v_1)=v_2\}$

Pros of H_{v_0}

+ H_{v_0} makes φ a well-defined function

Cons of H_{v_0}

- φ is maybe not injective
- + $\left[F(P): H_{v_0}\right]$ might be infinite

Second attempt at H. Define $B \coloneqq \{(p,q) \in P^2 : p(v_0) \neq q(v_0)\}$. For $(p,q) \in B$, $p^{-1} \cdot q \notin H_{v_0}$. So, we can define a normal subgroup of finite index $N_{p,q}$ with $p^{-1} \cdot qN_{p,q} \cap H_{v_0} = \emptyset$.

Let
$$N_B := \bigcap_{(p,q) \in B} N_{p,q}$$
.

 $\text{Consider } H_2 \coloneqq H_{v_0} N_B.$

Pros of H_2

- + H_2 makes φ a well-defined function
- H_2 makes φ a injective
- + $\left[F(P):H_{2}\right]$ is finite

Cons of H_2

- the new edges may still break the embedding property of φ

Third attempt at H. We need to make sure that non-edges in $\varphi(G)$ are not in any orbit of any edge in $\varphi(G)$. Let B' be the set of all $(p_1, p_2, p_3, p_4) \in P^4$ such that

$$p_1 p_3^{-1} p_4 p_2^{-1} \notin p_1 H_{v_0} p_1^{-1} p_2 H_{v_0} p_2^{-1}$$

and

$$p_1p_4^{-1}p_3p_2^{-1}\notin p_1H_{v_0}p_1^{-1}p_2H_{v_0}p_2^{-1}.$$

Apply Ribes and Zalesskii.

Let
$$H = H_{v_0} \left(\bigcap_{(p,q) \in B} N_{p,q} \cap \bigcap_{(p_1,p_2,p_3,p_4) \in B'} N_{p_1,p_2,p_3,p_4} \right)$$

Bibliography

- [1] D. Bradley-Williams, P. J. Cameron, J. Hubička, and M. Konečný, "EPPA numbers of graphs," *Journal of Combinatorial Theory, Series B*, vol. 170, pp. 203–224, 2025
- [2] D. Evans, J. Hubička, M. Konečný, and J. Nešetřil, "EPPA for two-graphs and antipodal metric spaces," *Proceedings of the American Mathematical Society*, vol. 148, no. 5, pp. 1901–1915, 2020
- [3] M. Hall, "A Topology for Free Groups and Related Groups," *Annals of Mathematics*, vol. 52, no. 1, pp. 127–139, 1950
- [4] B. Herwig and D. Lascar, "Extending partial automorphisms and the profinite topology on free groups," *Transactions of the American Mathematical Society*, vol. 352, no. 5, pp. 1985–2021, 2000

Bibliography

- [5] W. Hodges, I. Hodkinson, D. Lascar, and S. Shelah, "The small index property for ω-stable ω-categorical structures and for the random graph", *Journal of the London Mathematical Society*, vol. 2, no. 2, pp. 204–218, 1993
- [6] E. Hrushovski, "Extending partial isomorphisms of graphs," *combinatorica*, vol. 12, pp. 411–416, 1992
- [7] J. Huang, M. Pawliuk, M. Sabok, and D. T. Wise, "The Hrushovski property for hypertournaments and profinite topologies," *Journal of the London Mathematical Society*, vol. 100, no. 3, pp. 757–774, 2019
- [8] A. S. Kechris and C. Rosendal, "Turbulence, amalgamation, and generic automorphisms of homogeneous structures," *Proceedings of the London Mathematical Society*, vol. 94, no. 2, pp. 302– 350, 2007

- [9] M. Konecnỳ, "Model theory and extremal combinatorics," 2023
- [10] L. Ribes and P. A. Zalesskii, "The Pro-P Topology of a Free Group and Algorithmic Problems in Semigroups.," *Int. J. Algebra Comput.*, vol. 4, no. 3, pp. 359–374, 1994
- [11] D. N. Siniora, "Automorphism groups of homogeneous structures," 2017
- [12] S. Solecki, "Extending partial isometries," *Israel Journal of Mathematics*, vol. 150, no. 1, pp. 315–331, 2005